هوش مصنوعی چیست ؟
« هوش مصنوعی، دانش ساختن ماشین ها یا برنامههای هوشمند است. » همانگونه كه از تعریف فوق-كه توسط یكی از بنیانگذاران هوش مصنوعی ارائه شده است- برمیآید،حداقل به دو سؤال باید پاسخ داد:
1ـ هوشمندی چیست؟
2ـ برنامههای هوشمند، چه نوعی از برنامهها هستند؟تعریف دیگری كه از هوش مصنوعی میتوان ارائه داد به قرار زیر است:
« هوش مصنوعی، شاخهایست از علم كامپیوتر كه ملزومات محاسباتی اعمالی همچون ادراك (Perception)، استدلال(reasoning) و یادگیری(learning) را بررسی كرده و سیستمی جهت انجام چنین اعمالی ارائه میدهد.»و در نهایت تعریف سوم هوش مصنوعی از قرار زیر است:
«هوش مصنوعی، مطالعه روشهایی است برای تبدیل كامپیوتر به ماشینی كه بتواند اعمال انجام شده توسط انسان را انجام دهد.» به این ترتیب میتوان دید كه دو تعریف آخر كاملاً دو چیز را در تعریف نخست واضح كردهاند.
1ـ منظور از موجود یا ماشین هوشمند چیزی است شبیه انسان.
2ـ ابزار یا ماشینی كه قرار است محمل هوشمندی باشد یا به انسان شبیه شود، كامپیوتر است. هر دوی این نكات كماكان مبهم و قابل پرسشند. آیا تنها این نكته كه هوشمندترین موجودی كه میشناسیم، انسان است كافی است تا هوشمندی را به تمامی اعمال انسان نسبت دهیم؟ حداقل این نكته كاملاً واضح است كه بعضی جنبههای ادراك انسان همچون دیدن و شنیدن كاملاً ضعیفتر از موجودات دیگر است. علاوه بر این، كامپیوترهای امروزی با روشهایی كاملاً مكانیكی(منطقی) توانستهاند در برخی جنبههای استدلال، فراتر از تواناییهای انسان عمل كنند. بدین ترتیب، آیا میتوان در همین نقطه ادعا كرد كه هوش مصنوعی تنها نوعی دغدغه علمی یا كنجكاوی دانشمندانه است و قابلیت تعمق مهندسی ندارد؟(زیرا اگر مهندسی، یافتن روشهای بهینه انجام امور باشد، به هیچ رو مشخص نیست كه انسان اعمال خویش را به گونهای بهینه انجام میدهد). به این نكته نیز باز خواهیم گشت. اما همین سؤال را میتوان از سویی دیگر نیز مطرح ساخت، چگونه میتوان یقین حاصل كرد كه كامپیوترهای امروزین،


رؤیای طراحان اولیه كامپیوتر از بابیج تا تورینگ، ساختن ماشینی بود كه قادر به حل تمامی مسائل باشد، البته ماشینی كه در نهایت ساخته شد(كامپیوتر) به جز دسته ای خاص از مسائلقادر به حل تمامی مسائل بود. اما نكته در اینجاست كه این «تمامی مسائل» چیست؟ طبیعتاً چون طراحان اولیه كامپیوتر، منطقدانان و ریاضیدانان بودند، منظورشان تمامی مسائل منطقی یا محاسباتی بود. بدین ترتیب عجیب نیست، هنگامی كه فوننیومان سازنده اولین كامپیوتر، در حال طراحی این ماشین بود، كماكان اعتقاد داشت برای داشتن هوشمندی شبیه به انسان، كلید اصلی، منطق(از نوع به كار رفته در كامپیوتر) نیست، بلكه احتمالاً چیزی خواهد بود شبیه ترمودینامیك!
به هرحال، كامپیوتر تا به حال به چنان درجهای از پیشرفت رسیده و چنان سرمایهگذاری عظیمی برروی این ماشین انجام شده است كه به فرض این كه بهترین انتخاب نباشد هم، حداقل سهلالوصولترین و ارزانترین و عمومیترین انتخاب برای پیادهسازی هوشمندیست.
بنابراین ظاهراً به نظر میرسد به جای سرمایهگذاری برای ساخت ماشینهای دیگر هوشمند، میتوان از كامپیوترهای موجود برای پیادهسازی برنامههای هوشمند استفاده كرد و اگر چنین شود، باید گفت كه طبیعت هوشمندی ایجاد شده حداقل از لحاظ پیادهسازی، كاملاً با طبیعت هوشمندی انسانی متناسب خواهد بود، زیرا هوشمندی انسانی، نوعی هوشمندی بیولوژیك است كه با استفاده از مكانیسمهای طبیعی ایجاد شده، و نه استفاده از عناصر و مدارهای منطقی. در برابر تمامی استدلالات فوق می توان این نكته را مورد تاُمل و پرسش قرار داد كه هوشمندی طبیعی تا بدان جایی كه ما سراغ داریم، تنها برمحمل طبیعی و با استفاده از روش های طبیعت ایجاد شده است. طرفداران این دیدگاه تا بدانجا پیش رفتهاند كه حتی ماده ایجاد كننده هوشمندی را مورد پرسش قرار داده اند، كامپیوتر از سیلیكون استفاده می كند، در حالی كه طبیعت همه جا از كربن سود برده است. مهم تر از همه، این نكته است كه در كامپیوتر، یك واحد كاملاً پیچیده مسئولیت انجام كلیه اعمال هوشمندانه را بعهده دارد، در حالی كه طبیعت در سمت و سویی كاملاً مخالف حركت كرده است. تعداد بسیار زیادی از واحدهای كاملاً ساده (بعنوان مثال از نورونهای شبكه عصبی) با عملكرد همزمان خود (موازی) رفتار هوشمند را سبب می شوند. بنابراین تقابل هوشمندی مصنوعی و هوشمندی طبیعی حداقل در حال حاضر تقابل پیچیدگی فوق العاده و سادگی فوق العاده است. این مساُله هم اكنون كاملاً به صورت یك جنجال(debate) علمی در جریان است.
در هر حال حتی اگر بپذیریم كه كامپیوتر در نهایت ماشین هوشمند مورد نظر ما نیست، مجبوریم برای شبیهسازی هر روش یا ماشین دیگری از آن سود بجوییم.
تاریخ هوش مصنوعی
هوش مصنوعی به خودی خود علمی است كاملاً جوان. در واقع بسیاری شروع هوش مصنوعی را 1950 می دانند زمانی كه آلن تورینگ مقاله دورانساز خود را در باب چگونگی ساخت ماشین هوشمند نوشت (آنچه بعدها به تست تورینگ مشهور شد) تورینگ درآن مقاله یك روش را برای تشخیص هوشمندی پیشنهاد میكرد. این روش بیشتر به یك بازی شبیه بود.

فرض كنید شما در یك سمت یك دیوار (پرده یا هر مانع دیگر) هستید و به صورت تله تایپ باآن سوی دیوار ارتباط دارید و شخصی از آن سوی دیوار از این طریق با شما در تماس است. طبیعتاً یك مكالمه بین شما و شخص آن سوی دیوار میتواند صورت پذیرد. حال اگر پس از پایان این مكالمه، به شما گفته شود كه آن سوی دیوار نه یك شخص بلكه (شما كاملاً از هویت شخص آن سوی دیوار بیخبرید) یك ماشین بوده كه پاسخ شما را میداده، آن ماشین یك ماشین هوشمند خواهد بود، در غیر این صورت(یعنی در صورتی كه شما در وسط مكالمه به مصنوعی بودن پاسخ پی ببرید) ماشین آن سوی دیوار هوشمند نیست و موفق به گذراندن تست تورینگ نشده است. باید دقت كرد كه تورینگ به دو دلیل كاملاً مهم این نوع از ارتباط(ارتباط متنی به جای صوت) را انتخاب كرد. اول این كه موضوع ادراكی صوت را كاملاً از صورت مساُله حذف كند و این تست هوشمندی را درگیر مباحث مربوط به دریافت و پردازش صوت نكند و دوم این كه بر جهت دیگری هوش مصنوعی به سمت نوعی از پردازش زبان طبیعی تاكید كند.
در هر حال هر چند تاكنون تلاشهای متعددی در جهت پیاده سازی تست تورینگ صورت گرفته مانند برنامه Eliza و یا AIML (زبانی برای نوشتن برنامههایی كه قادر به chat كردن اتوماتیك باشند) اما هنوز هیچ ماشینی موفق به گذر از چنین تستی نشده است.
همانگونه كه مشخص است، این تست نیز كماكان دو پیش فرض اساسی را در بردارد:
1ـ نمونه كامل هوشمندی انسان است.
2ـ مهمترین مشخصه هوشمندی توانایی پردازش و درك زبان طبیعی است. درباره نكته اول به تفصیل تا بدین جا سخن گفته ایم؛ اما نكته دوم نیز به خودی خود باید مورد بررسی قرارگیرد. این كه توانایی درك زبان نشانه هوشمندی است تاریخی به قدمت تاریخ فلسفه دارد. از نخستین روزهایی كه به فلسفه(Epistemology) پرداخته شده زبان همیشه در جایگاه نخست فعالیتهای شناختی قرار داشته است. از یونانیان باستان كه لوگوس را به عنوان زبان و حقیقت یكجا به كار میبردند تا فیلسوفان امروزین كه یا زبان را خانه وجود میدانند، یا آن را ریشه مسائل فلسفی میخوانند؛ زبان، همواره شاُن خود را به عنوان ممتازترین توانایی هوشمندترین موجودات حفظ كرده است. با این ملاحظات میتوان درك كرد كه چرا آلن تورینگ تنها گذر از این تست متظاهرانه زبانی را شرط دستیابی به هوشمندی میداند. تست تورینگ اندكی كمتر از نیمقرن هوش مصنوعی را تحت تاُثیر قرار داد اما شاید تنها در اواخر قرن گذشته بود كه این مسئله بیش از هر زمان دیگری آشكار شد كه متخصصین هوش مصنوعی به جای حل این مسئله باشكوه ابتدا باید مسائل كماهمیتتری همچون درك تصویر (بینایی ماشین) درك صوت و… را حل كنند.به این ترتیب با به محاق رفتن آن هدف اولیه، اینك گرایشهای جدیدتری در هوش مصنوعی ایجاد شدهاند. در سالهای آغازین AI تمركز كاملاً برروی توسعه سیستمهایی بود كه بتوانند فعالیتهای هوشمندانه(البته به زعم آن روز) انسان را مدل كنند، و چون چنین فعالیتهایی را در زمینههای كاملاً خاصی مانند بازیهای فكری، انجام فعالیتهای تخصصی حرفهای، درك زبان طبیعی، و…. میدانستند طبیعتاً به چنین زمینههایی بیشتر پرداخته شد.
در زمینه توسعه بازیها، تا حدی به بازی شطرنج پرداخته شد كه غالباً عدهای هوش مصنوعی را با شطرنج همزمان به خاطر میآورند. مككارتی كه پیشتر اشاره شد، از بنیانگذاران هوش مصنوعی است این روند را آنقدر اغراقآمیز میداند كه میگوید:
«محدود كردن هوش مصنوعی به شطرنج مانند این است كه علم ژنتیك را از زمان داروین تا كنون تنها محدود به پرورش لوبیا كنیم.» به هر حال دستاورد تلاش مهندسین و دانشمندان در طی دهههای نخست را میتوان توسعه تعداد بسیار زیادی سیستمهای خبره در زمینههای مختلف مانند پزشكی عمومی، اورژانس، دندانپزشكی، تعمیرات ماشین،….. توسعه بازیهای هوشمند، ایجاد مدلهای شناختی ذهن انسان، توسعه سیستمهای یادگیری،…. دانست. دستاوردی كه به نظر میرسد برای علمی با كمتر از نیم قرن سابقه قابل قبول به نظر میرسد.
افقهای هوش مصنوعی در 1943،Mcclutch (روانشناس، فیلسوف و شاعر) و Pitts (ریاضیدان) طی مقالهای، دیدههای آن روزگار درباره محاسبات، منطق و روانشناسی عصبی را تركیب كردند. ایده اصلی آن مقاله چگونگی انجام اعمال منطقی به وسیله اجزای ساده شبكه عصبی بود. اجزای بسیار ساده (نورونها) این شبكه فقط از این طریق سیگنال های تحریك (exitory) و توقیف (inhibitory) با هم درتماس بودند. این همان چیزی بود كه بعدها دانشمندان كامپیوتر آن را مدارهای (And) و (OR) نامیدند و طراحی اولین كامپیوتر در 1947 توسط فون نیومان عمیقاً از آن الهام میگرفت. امروز پس از گذشته نیمقرن از كار Mcclutch و Pitts شاید بتوان گفت كه این كار الهام بخش گرایشی كاملاً پویا و نوین در هوش مصنوعی است. پیوندگرایی (Connectionism) هوشمندی را تنها حاصل كار موازی و همزمان و در عین حال تعامل تعداد بسیار زیادی اجزای كاملاً ساده به هم مرتبط میداند. شبكههای عصبی كه از مدل شبكه عصبی ذهن انسان الهام گرفتهاند امروزه دارای كاربردهای كاملاً علمی و گسترده تكنولوژیك شدهاند و كاربرد آن در زمینههای متنوعی مانند سیستمهای كنترلی، رباتیك، تشخیص متون، پردازش تصویر،… مورد بررسی قرار گرفته است.

البته هنگامی كه از گرایشهای آینده سخن میگوییم، هرگز نباید از گرایشهای تركیبی غفلت كنیم. گرایشهایی كه خود را به حركت در چارچوب شناختی یا بیولوژیك یا منطقی محدود نكرده و به تركیبی از آنها میاندیشند. شاید بتوان پیشبینی كرد كه چنین گرایشهایی فرا ساختارهای (Meta –Structure) روانی را براساس عناصر ساده بیولوژیك بنا خواهند كرد. در ادامه ی مطلب به...
برگرفته از سایت www.srco.ir
تاریخچه
هوش مصنوعی توسط فلاسفه و ریاضیدانانی نظیر بول که اقدام به ارائهٔ قوانین و نظریههایی در مورد منطق نمودند، مطرح شده بود. با اختراع رایانههای الکترونیکی در سال ۱۹۴۳، هوش مصنوعی دانشمندان آن زمان را به چالشی بزرگ فراخواند. دراین شرایط، چنین بهنظر میرسید که این فناوری قادر به شبیهسازی رفتارهای هوشمندانه خواهد بود.
با وجود مخالفت گروهی از متفکرین با هوش مصنوعی که با تردید به کارآمدی آن مینگریستند تنها پس از چهار دهه، شاهد تولد ماشینهای شطرنج باز و دیگر سامانههای هوشمند در صنایع گوناگون شدیم.
نام هوش مصنوعی در سال ۱۹۶۵ میلادی به عنوان یک دانش جدید ابداع گردید. البته فعّالیّت در این زمینه از سال ۱۹۶۰ میلادی شروع شد.(مرجع۱)
بیشتر کارهای پژوهشی اولیه در هوش مصنوعی بر روی انجام ماشینی بازیها و نیز اثبات قضیههای ریاضی با کمک رایانهها بود. در آغاز چنین به نظر میآمد که رایانهها قادر خواهند بود چنین فعالیتهایی را تنها با بهره گرفتن از تعداد بسیار زیادی کشف و جستجو برای مسیرهای حل مسئله و سپس انتخاب بهترین روش برای حل آنها به انجام رسانند.
این اصطلاح (هوش مصنوعی) برای اولین بار توسط جان مکارتی (John McCorthy) -که از آن بهعنوان پدر «علم و دانش تولید ماشینهای هوشمند» یاد میشود- استفاده شد. آقای جان مکارتی مخترع یکی از زبانهای برنامه نویسی هوش مصنوعی به نام (lisp) نیز هستند. با این عنوان میتوان به هویت رفتارهای هوشمندانه یک ابزار مصنوعی پی برد. (ساختهٔ دست بشر، غیر طبیعی، مصنوعی) حال آنکه AI به عنوان یک اصطلاح عمومی پذیرفته شده که شامل محاسبات هوشمندانه و ترکیبی (مرکب از مواد مصنوعی) است.
از اصطلاح strong and weak AI میتوان تا حدودی برای معرفی ردهبندی سیستمها استفاده کرد. AIها در رشتههای مشترکی چون علم کامپیوتر، روانشناسی و فلسفه مورد مطالعه قرار میگیرند، که مطابق آن باعث ایجاد یک رفتار هوشمندانه، یادگیری و سازش میشود و معمولاً نوع پیشرفتهٔ آن در ماشینها و کامپیوترها استفاده میشود. زبانهای برنامه نویسی هوش مصنوعی lisp ,Prolog, clips، VP-Expert میباشد.
آزمون تورینگ
آزمون تورینگ[۴] آزمونی است که توسط آلن تورینگ در سال ۱۹۵۰ در نوشتهای به نام «محاسبات ماشینی و هوشمندی» مطرح شد. در این آزمون شرایطی فراهم میشود که شخصی با ماشینی تعامل برقرار کند و پرسشهای کافی برای بررسی اقدامات هوشمندانهٔ ماشین، از آن بپرسد. چنانچه در پایان آزمایش نتواند تشخیص دهد که با انسان و یا با ماشین در تعامل بوده است، تست تورینگ با موفقیت انجام شده است. تا کنون هیچ ماشینی از این آزمون با موفقیت بیرون نیامده است. کوشش این آزمون برای تشخیص درستی هوشمندی یک سیستم است که سعی در شبیه سازی انسان دارد.
تعریف و طبیعت هوش مصنوعی
هنوز تعریف دقیقی برای هوش مصنوعی که مورد توافق دانشمندانه این علم باشدارائه نشدهاست، و این به هیچ وجه مایهٔ تعجّب نیست. چرا که مقولهٔ مادر و اساسیتر از آن، یعنی خود هوش هم هنوز بطور همهجانبه و فراگیر تن به تعریف ندادهاست. در واقع، میتوان نسلهایی از دانشمندان را سراغ گرفت که تمام دوران زندگی خود را صرف مطالعه و تلاش در راه یافتن جوابی به این سؤال عمده نمودهاند که: هوش چیست؟
اما اکثر تعریفهایی که در این زمینه ارایه شدهاند بر پایه یکی از ۴ باور زیر قرار میگیرند:
- سیستمهایی که به طور منطقی فکر میکنند
- سیستمهایی که به طور منطقی عمل میکنند
- سیستمهایی که مانند انسان فکر میکنند
- سیستمهایی که مانند انسان عمل میکنند (مرجع۱)
شاید بتوان هوش مصنوعی را این گونه توصیف کرد: «هوش مصنوعی عبارت است از مطالعه این که چگونه کامپیوترها را میتوان وادار به کارهایی کرد که در حال حاضر انسانها آنها را صحیح یا بهتر انجام میدهند»(مرجع۲). هوش مصنوعی به هوشی که یک ماشین از خود نشان میدهد و یا به دانشی در کامپیوتر که سعی در ایجاد آن دارد گفته میشود. بیشتر نوشتهها و مقالههای مربوط به هوش مصنوعی آن را «دانش شناخت و طراحی عاملهای هوشمند [۱]» تعریف کردهاند. یک عامل هوشمند سیستمی است که با شناخت محیط اطراف خود، شانس موفقیت خود را بالا میبرد.[۲] جان مکارتی که واژه هوش مصنوعی را در سال ۱۹۵۶ استفاده نمود، آن را «دانش و مهندسی ساخت ماشینهای هوشمند» تعریف کردهاست.
اینکه هوش مصنوعی چیست و چه تعریفی میتوان از آن بیان نمود؟ مبحثی است که تاکنون دانشمندان به یک تعریف جامع در آن نرسیدهاند و هریک تعریفی را ارائه نمودهاند که در زیر نمونهای از این تعاریف آمدهاست.
- هنر ایجاد ماشینهایی که وظایفی را انجام میدهندکه انجام آنها توسط انسانها نیاز به هوش دارد (کورزویل- ۱۹۹۰)
- مطالعه استعدادهای ذهنی از طیق مدلهای محاسباتی (کارنیاک و مک درموت - ۱۹۸۵)
- مطالعه اینکه چگونه کامپیوترها را قادر به انجام اعمالی کنیم که در حال حاضر، انسان آن اعمال را بهتر انجام میدهد.(ریچ و نایت -۱۹۹۱)
- خودکارسازی فعالیتهایی که ما آنها را به تفکر انسانی نسبت میدهیم. فعالیتهایی مثل تصمیم گیری، حل مسئله، یادگیری و... (بلمن -۱۹۷۸)
- تلاشی نو و مهیج برای اینکه کامپیوترها را قادر به فکر کردن کنیم. ماشینهایی با فکر و حس تشخیص واقعی (هاگلند-۱۹۸۵)
- یک زمینه تخصصی که به دنبال توضیح و شبیه سازی رفتار هوشمندانه بوسیله فرایندهای کامپیوتری است.(شالکوف -۱۹۹۰)
- مطالعه محاسباتی که درک، استدلال و عمل کردن را توسط ماشینها را ممکن میسازد. (وینستون - ۱۹۹۲)
- توانایی دست یافتن به کارایی در حد انسان در همه امور شناختی توسط رایانه (آلن تورینگ – ۱۹۵۰)
- هوش مصنوعی دانش و مهندسی ساخت ماشینهای هوشمند و به خصوص برنامههای رایانهای هوشمند است. هوش مصنوعی با وظیفه مشابه استفاده از کامپیوترها برای فهم چگونگی هوش انسان مرتبط است، اما مجبور نیست خودش را به روشهایی محدود کند که بیولوژیکی باشند. (جان مک کارتی – ۱۹۸۰)
- هوش مصنوعی علم طراحی سیستمهایی رایانهای ویا الکترونیکی است که تلاش مینماید تا رفتار انسان گونه را بازسازی نماید." به عبارت دیگر: هوش مصنوعی علم و مهندسی ایجاد ماشینهایی با هوش با به کارگیری از کامپیوتر و الگوگیری از درک هوش انسانی و یا حیوانی و نهایتاً دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی میباشد. (مسعود مولوی-۲۰۰۶)
همانطور که مشاهده مینمایید تعاریف بسیار متفاوتی از هوش مصنوعی ارائه شدهاست. همه تعریفهای ارائه شده درباره هوش مصنوعی تا کنون بر پایه یکی از چهار تعریف زیر استوار هستند که:
- سیستمی که عقلانی فکر میکند. – سیستمی که مثل انسانها فکر میکند. - سیستمی که عقلانی رفتار میکند. – سیستمی که همانند انسانها عمل میکند.
هر دانشمند و محققی در این زمینهها، عقیده متفاوتی را از عملکرد و نحوه کارکرد یک سیستم هوشمند دارد. اما براستی چرا این چنین است؟ برای پاسخ به این سوال میبایست در ابتدا مفهوم هوشمندی را برای خود تعریف کنیم.
هوشمندی مفهومی نسبی دارد و نمیتوان محدوده صحیحی را برای ارائه تعریف از آن مشخص نمود. رفتاری که از نظر یک فرد هوشمند به نظر میرسد؛ ممکن است برای یک فرد دیگر اینگونه به نظر نرسد. اما در مجموع خصوصیات زیر قابلیتهای ضروری برای هوشمندی است:
- پاسخ به موقعیتهای از قبل تعریف نشده با انعطاف بسیار بالا و بر اساس بانک دانش
- معنا دادن به پیامهای نادرست یا مبهم
- درک تمایزها و شباهتها
- تجزیه و تحلیل اطلاعات و نتیجه گیری
- توانمندی آموختن و یادگرفتن
- برقراری ارتباط دوطرفه
- و...
به فرض اینکه تعاریف بالا را از هوشمندی بپذیریم، موارد زیر فهرستی است از وظایفی که از یک سیستم هوشمند انتظار میرود و تقریباً اکثر دانشمندان هوش مصنوعی بر آن توافق نظردارند به شرح زیر است:
- تولید گفتار
- تشخیص و درک گفتار (پردازش زبان طبیعی انسان)
- دستور پذیری و قابلیت انجام اعمال فیزیکی در محیط طبیعی و مجازی
- استنتاج و استدلال
- تشخیص الگو و بازشناسی الگو برای پاسخ گویی به مسائل بر اساس دانش قبلی
- شمایلی گرافیکی و یا فیزیکی جهت ابراز احساسات و عکس العملهای ظریف
- سرعت عکس العمل بالا
- و...
تحقیقات و جستجوهایی انجام شده برای رسیدن به ساخت چنین ماشینهایی مرتبط با بسیاری از رشتههای علمی دیگر میباشد، مانند علوم رایانه، روانشناسی، فلسفه، عصب شناسی، علوم ادراکی، تئوری کنترل، احتمالات، بهینه سازی و منطق
فلسفهٔ هوش مصنوعی
بطور کلی ماهیت وجودی هوش به مفهوم جمع آوری اطلاعات، استقرا و تحلیل تجربیات به منظور رسیدن به دانش و یا ارایه تصمیم است. در واقع هوش به مفهوم به کارگیری تجربه به منظور حل مسائل دریافت شده تلقی میشود. هوش مصنوعی علم و مهندسی ایجاد ماشینهایی هوشمند با به کارگیری از کامپیوتر و الگوگیری از درک هوش انسانی و یا حیوانی و نهایتاً دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی است.
در مقایسه هوش مصنوعی با هوش انسانی میتوان گفت که انسان قادر به مشاهده و تجزیه و تحلیل مسایل در جهت قضاوت و اخذ تصمیم است در حالی که هوش مصنوعی مبتنی بر قوانین و رویههایی از قبل تعبیه شده بر روی کامپیوتر است. در نتیجه علیرغم وجود کامپیوترهای بسیار کارا و قوی در عصر حاضر ما هنوز قادر به پیاده کردن هوشی نزدیک به هوش انسان در ایجاد هوشهای مصنوعی نبودهایم.
بطور کلّی، هوش مصنوعی را میتوان از زوایای متفاوتی مورد بررسی و مطالعه قرار داد. مابین هوش مصنوعی به عنوان یک هدف، هوش مصنوعی به عنوان یک رشته تحصیلی دانشگاهی، و یا هوش مصنوعی به عنوان مجموعهٔ فنون و راه کارهایی که توسط مراکز علمی مختلف و صنایع گوناگون تنظیم و توسعه یافتهاست باید تفاوت قائل بود.
اتاق چینی
اتاق چینی بحثی است که توسط «جان سیرل» در ۱۹۸۰ مطرح شد در این راستا که یک ماشین سمبل گرا هرگز نمیتواند دارای ویژگیهایی مانند «مغز» و یا «فهمیدن» باشد، صرف نظر از اینکه چقدر از خود هوشمندی نشان دهد.
مدیریت پیچیدگی
ایجاد و ابداع فنون و تکنیکهای لازم برای مدیریّت پیچیدگی را باید به عنوان هستهٔ بنیادین تلاشهای علمی و پژوهشی گذشته، حال، و آینده، در تمامی زمینههای علوم رایانه، و به ویژه، در هوش مصنوعی معرّفی کرد. شیوهها و تکنیکهای هوش مصنوعی، در واقع، برای حلّ آن دسته از مسائل به وجود آمدهاست که به طور سهل و آسان توسط برنامهنویسی تابعی (Functional programming)، یا شیوههای ریاضی قابل حلّ نبودهاند.
در بسیاری از موارد، با پوشانیدن و پنهان ساختن جزئیّات فاقد اهمّیّت است که بر پیچیدگی فائق میآییم و میتوانیم بر روی بخشهایی از مسئله متمرکز شویم که مهمتر است. تلاش اصلی در واقع، ایجاد و دستیابی به لایهها و ترازهای بالاتر از هوشمندی تجرید را نشانه میرود، تا آنجا که، سرانجام برنامههای کامپیوتری درست در همان سطحی کار خواهند کرد که خود انسانها رسیدهاند.
به یاری پژوهشهای گسترده دانشمندان علوم مرتبط، هوش مصنوعی تاکنون راه بسیاری پیمودهاست. در این راستا، تحقیقاتی که بر روی توانایی آموختن زبانها انجام گرفت و همچنین درک عمیق از احساسات، دانشمندان را در پیشبرد این دانش کمک زیادی کردهاست. یکی از اهداف متخصصین، تولید ماشینهایی است که دارای احساسات بوده و دست کم نسبت به وجود خود و احساسات خود آگاه باشند. این ماشین باید توانایی تعمیم تجربیات قدیمی خود در شرایط مشابه جدید را داشته و به این ترتیب اقدام به گسترش دامنه دانش و تجربیاتش کند.
برای نمونه روباتیی هوشمند که بتواند اعضای بدن خود را به حرکت درآورد، این روبات نسبت به این حرکت خود آگاه بوده و با آزمون و خطا، دامنه حرکت خود را گسترش میدهد و با هر حرکت موفقیت آمیز یا اشتباه، دامنه تجربیات خود را وسعت بخشیده و سر انجام راه رفته و یا حتی میدود و یا به روشی برای جابجا شدن دست مییابد، که سازندگانش برای او متصور نبودهاند.
هر چند نمونه بالا ممکن است کمی آرمانی به نظر برسد، ولی به هیچ عنوان دور از دسترس نیست. دانشمندان، عموماً برای تولید چنین ماشینهایی، از وجود مدلهای زندهای که در طبیعت وجود، به ویژه آدمی نیز سود بردهاند.
هوش مصنوعی اکنون در خدمت توسعه علوم رایانه نیز است. زبانهای برنامه نویسی پیشرفته، که توسعه ابزارهای هوشمند را ممکن ساختهاند، پایگاههای دادهای پیشرفته، موتورهای جستجو، و بسیاری نرمافزارها و ماشینها از نتایج پژوهشهایی در راستای هوش مصنوعی بودهاند.
تکنیکها وزبانهای برنامه نویسی هوش مصنوعی
عملکرد اولیه برنامه نویسی هوش مصنوعی ایجاد ساختار کنترلی مورد لزوم برای محاسبه سمبولیک است زبانهای برنامه نویسی LISP,PROLOG علاوه بر اینکه از مهمترین زبانهای مورد استفاده در هوش مصنوعی هستند خصوصیات نحوی ومعنایی انها باعث شده که انها شیوهها و راه حلهای قوی برای حل مسئله ارایه کنند. تاثیر قابل توجه این زبانها بر روی توسعه AI از جمله تواناییهای آنها به عنوان «ابزارهای فکرکردن» است. در حقیقت همان طور که هوش مصنوعی مراحل رشد خود را طی میکند، زبانهای LISP ,PROLOG بیشتر مطرح میشوند که این زبانها کار خود را در محدوده توسعه سیستمهای AIدر صنعت ودانشگاهها دنبال میکنند و طبیعتاً اطلاعات در مورد این زبانها به عنوان بخشی از مهارت هر برنامه نویس AIاست.
- PROLOG: یک زبان برنامه نویسی منطقی است. یک برنامه منطقی دارای یک سری ویژگیهای قانون و منطق است. در حقیقت خود این نام از برنامه نویسی PROدر LOGIC میآید. در این زبان یک مفسر برنامه را بر اساس یک منطق مینویسد. ایده استفاده توصیفی محاسبهٔ اولیه برای بیان خصوصیات حل مسئله یکی از محوریتهای مشارکت PROLOG است که برای علم کامپیوتر به طور کلی و بطور جزئی برای زبان برنامه نویسی هوشمند مورد استفاده قرار میگیرند.
- LISP: اصولاً LISP یک زبان کامل است که دارای عملکردها و لیستهای لازمه برای توصیف عملکردهای جدید، تشخیص تناسب و ارزیابی معانی است. LISP به برنامه نویس قدرت کامل برای اتصال به ساختارهای اطلاعاتی را میدهد گر چه LISP یکی از قدیمیترین ترین زبانهای محاسباتی است که هنوز فعال است ولی دقت کافی در برنامه نویسی وطراحی توسعه باعث شده است که این یک زبان برنامه نویسی فعال باقی بماند.
در حقیقت این مدل برنامه نویسی طوری موثر بودهاست که تعدادی از دیگر زبانها براساس عملکرد برنامه نویسی آن بنا شدهاند: مثل FP،ML،SCHEME
یکی از مهمترین برنامههای مرتبط با LISP برنامه SCHEME است که یک تفکر دوباره در باره زبان در آن وجود دارد که بوسیله توسعه AI وبرای آموزش واصول علم کامپیوتر مورد استفاده قرار میگیرد.
عاملهای هوشمند
مقالهٔ اصلی: کارگزار هوشمند
عاملها (Agents) قادر به شناسایی الگوها، و تصمیم گیری بر اساس قوانین فکر کردن خودهستند. قوانین و چگونگی فکر کردن هر عامل در راستای دستیابی به هدفش، تعریف میشود. این سیستمها بر اساس قوانین خاص خود فکر کرده و کار خودرا به درستی انجام میدهند. پس عاقلانه رفتار میکنند، هر چند الزاماً مانند انسان فکر نمیکنند.
در بحث هوشمندی اصطلاح PEAS سرنام واژههای "کارایی (Performance)"، "محیط (Environment)"، "اقدام گر (Agent)" و "حسگر (Sensor)" است.
سیستمهای خبره
مقالهٔ اصلی: سیستمهای خبره
سیستمهای خبره زمینهای پرکاربرد در هوش مصنوعی و مهندسی دانش است که با توجّه به نیاز روزافزون جوامع بر اتخاذ راه حلها و تصمیمات سریع در مواردی که دانشهای پیچیده و چندگانهٔ انسانی مورد نیاز است، بر اهمیت نقش آنها افزوده هم میشود. سیستمهای خبره به حل مسائلی میپردازند که به طور معمول نیازمند تخصّصهای کاردانان و متخصّصان انسانی است. به منظور توانایی بر حل مسائل در چنین سطحی (ترازی)، دسترسی هرچه بیشتر اینگونه سامانهها به دانش موجود در آن زمینه خاص ضروری میگردد.